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Computerized electrocardiogram (ECG) interpretation plays 
a critical role in the clinical ECG workflow1. Widely available 
digital ECG data and the algorithmic paradigm of deep learn-
ing2 present an opportunity to substantially improve the accu-
racy and scalability of automated ECG analysis. However, a 
comprehensive evaluation of an end-to-end deep learning 
approach for ECG analysis across a wide variety of diagnostic 
classes has not been previously reported. Here, we develop 
a deep neural network (DNN) to classify 12 rhythm classes 
using 91,232 single-lead ECGs from 53,549 patients who 
used a single-lead ambulatory ECG monitoring device. When 
validated against an independent test dataset annotated by 
a consensus committee of board-certified practicing cardiolo-
gists, the DNN achieved an average area under the receiver 
operating characteristic curve (ROC) of 0.97. The average F1 
score, which is the harmonic mean of the positive predictive 
value and sensitivity, for the DNN (0.837) exceeded that of 
average cardiologists (0.780). With specificity fixed at the 
average specificity achieved by cardiologists, the sensitivity 
of the DNN exceeded the average cardiologist sensitivity for 
all rhythm classes. These findings demonstrate that an end-
to-end deep learning approach can classify a broad range of 
distinct arrhythmias from single-lead ECGs with high diagnos-
tic performance similar to that of cardiologists. If confirmed in 
clinical settings, this approach could reduce the rate of misdi-
agnosed computerized ECG interpretations and improve the 
efficiency of expert human ECG interpretation by accurately 
triaging or prioritizing the most urgent conditions.

The electrocardiogram is a fundamental tool in the everyday 
practice of clinical medicine, with more than 300 million ECGs 
obtained annually worldwide3. The ECG is pivotal for diagnos-
ing a wide spectrum of abnormalities from arrhythmias to acute 
coronary syndrome4. Computer-aided interpretation has become 
increasingly important in the clinical ECG workflow since its intro-
duction over 50 years ago, serving as a crucial adjunct to physician 
interpretation in many clinical settings1. However, existing com-
mercial ECG interpretation algorithms still show substantial rates 
of misdiagnosis1,5–7. The combination of widespread digitization of 
ECG data and the development of algorithmic paradigms that can 
benefit from large-scale processing of raw data presents an opportu-
nity to reexamine the standard approach to algorithmic ECG analy-
sis and may provide substantial improvements to automated ECG 
interpretation.

Substantial algorithmic advances in the past five years have been 
driven largely by a specific class of models known as deep neural 

networks2. DNNs are computational models consisting of multiple 
processing layers, with each layer being able to learn increasingly 
abstract, higher-level representations of the input data relevant to 
perform specific tasks. They have dramatically improved the state 
of the art in speech recognition8, image recognition9, strategy games 
such as Go10, and in medical applications11,12. The ability of DNNs 
to recognize patterns and learn useful features from raw input data 
without requiring extensive data preprocessing, feature engineer-
ing or handcrafted rules2 makes them particularly well suited to 
interpret ECG data. Furthermore, since DNN performance tends 
to increase as the amount of training data increases2, this approach 
is well positioned to take advantage of the widespread digitization 
of ECG data.

A comprehensive evaluation of whether an end-to-end deep 
learning approach can be used to analyze raw ECG data to classify 
a broad range of diagnoses remains lacking. Much of the previous 
work to employ DNNs toward ECG interpretation has focused on 
single aspects of the ECG processing pipeline, such as noise reduc-
tion13,14 or feature extraction15,16, or has approached limited diag-
nostic tasks, detecting only a handful of heartbeat types (normal, 
ventricular or supraventricular ectopic, fusion, and so on)17–20 or 
rhythm diagnoses (most commonly atrial fibrillation or ventric-
ular tachycardia)21–25. Lack of appropriate data has limited many 
efforts beyond these applications. Most prior efforts used data 
from the MIT-BIH Arrhythmia database (PhysioNet)26, which 
is limited by the small number of patients and rhythm episodes  
present in the dataset.

In this study, we constructed a large, novel ECG dataset that 
underwent expert annotation for a broad range of ECG rhythm 
classes. We developed a DNN to detect 12 rhythm classes from 
raw single-lead ECG inputs using a training dataset consisting of 
91,232 ECG records from 53,549 patients. The DNN was designed 
to classify 10 arrhythmias as well as sinus rhythm and noise for 
a total of 12 output rhythm classes (Extended Data Fig. 1). ECG 
data were recorded by the Zio monitor, which is a Food and Drug 
Administration (FDA)-cleared, single-lead, patch-based ambula-
tory ECG monitor27 that continuously records data from a single 
vector (modified Lead II) at 200 Hz. The mean and median wear 
time of the Zio monitor in our dataset was 10.6 and 13.0 days, 
respectively. Mean age was 69 ±​ 16 years and 43% were women. 
We validated the DNN on a test dataset that consisted of 328 ECG 
records collected from 328 unique patients, which was annotated by 
a consensus committee of expert cardiologists (see Methods). Mean 
age on the test dataset was 70 ±​ 17 years and 38% were women. The 
mean inter-annotator agreement on the test dataset was 72.8%. 
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Supplementary Table 1 shows the number of unique patients  
exhibiting each rhythm class.

We first compared the performance of the DNN against the gold 
standard cardiologist consensus committee diagnoses by calculat-
ing the AUC (Table 1a). Since the DNN algorithm was designed 
to make a rhythm class prediction approximately once per second 
(see Methods), we report performance both as assessed once every 
second—which we call “sequence-level” and consists of one rhythm 
class per interval—and once per record, which we call “set-level” 
and consists of the group of unique diagnoses present in the record. 
Sequence-level metrics help capture the duration of an arrhythmia, 
such as its onset and offset within a record, whereas set-level metrics 
focus only on the existence of a rhythm class within a record. The 
DNN achieved an AUC of greater than 0.91 for all rhythm classes; 
at the sequence-level all but one AUC was above 0.97. The class-
weighted average AUC was 0.978 at the sequence-level and 0.977 at 
the set-level. The model demonstrated high AUCs for arrhythmias 
of greater clinical significance such as AF, atrio-ventricular block, 
and ventricular tachycardia. The sequence and set-level results were 
similar, though sequence-level AUC was higher in the majority of 
cases. In sensitivity analyses, we calculated multi-class AUC using 
the method described by Hand and Till28 and results were materi-
ally unchanged. Supplementary Table 2 shows the maximum sensi-
tivity achieved by the DNN with specificity >​90%, and vice versa. 
With one exception, all sensitivity and specificity pairs were >​90%.

In addition to a cardiologist consensus committee annotation, 
each ECG record in the test dataset received annotations from six 
separate individual cardiologists who were not part of the commit-
tee (see Methods). Using the committee labels as the gold standard, 
we compared the DNN algorithm F1 score to the average individual 
cardiologist F1 score, which is the harmonic mean of the positive 
predictive value (PPV; precision) and sensitivity (recall) (Table 1). 
Cardiologist F1 scores were averaged over six individual cardiolo-
gists. The trend of DNN F1 scores tended to follow that of the aver-
aged cardiologist F1 scores: both had lower F1 on similar classes, 
such as ventricular tachycardia and ectopic atrial rhythm (EAR). 
The set-level average F1 scores weighted by the frequency of each 
class for the DNN (0.837) exceeded those for the averaged cardi-
ologist (0.780). We performed multiple sensitivity analyses, all of 
which were consistent with our main results: both AUC and F1 

scores on the 10% development dataset (n =​ 8,761) were materially 
unchanged from the test dataset results, although they were slightly 
higher (Supplementary Tables 3 and 4). In addition, we retrained 
the DNN holding out an additional 10% of the training dataset as 
a second held-out test dataset (n =​ 8,768); the AUC and F1 scores 
for all rhythms were materially unchanged (Supplementary Tables 5 
and 6). We note that unlike the primary test dataset, which has gold-
standard annotations from a committee of cardiologists, both sensi-
tivity analysis datasets are annotated by certified ECG technicians.

We plotted receiver operating characteristic curves (ROCs) and 
precision-recall curves for the sequence-level analyses of three 
example classes: atrial fibrillation; trigeminy; and AVB (Fig. 1a,b). 
Individual cardiologist performance and averaged cardiologist per-
formance are plotted on the same figure. Extended Data Fig. 2 pres-
ents ROCs for all classes, showing that the model met or exceeded 
the averaged cardiologist performance for all rhythm classes. Fixing 
the specificity at the average specificity level achieved by cardiolo-
gists, the sensitivity of the DNN exceeded the average cardiolo-
gist sensitivity for all rhythm classes (Table 2). We used confusion 
matrices to illustrate the discordance between the DNN’s predic-
tions (Fig. 2a) or averaged cardiologist predictions (Fig. 2b) and the 
committee consensus. The two confusion matrices exhibit a similar 
pattern, highlighting those rhythm classes that were generally more 
problematic to classify (that is, supraventricular tachycardia (SVT) 
versus atrial fibrillation, junctional versus sinus rhythm, and EAR 
versus sinus rhythm).

Finally, to demonstrate the generalizability of our DNN 
architecture to external data, we applied our DNN to the 
2017 PhysioNet Challenge data (https://physionet.org/chal-
lenge/2017/), which contained four rhythm classes: sinus 
rhythm; atrial fibrillation; noise; and other. Keeping our DNN 
architecture fixed and without any other hyper-parameter tun-
ing, we trained our DNN on the publicly available training 
dataset (n =​ 8,528), holding out a 10% development dataset for 
early stopping. DNN performance on the hidden test dataset 
(n =​ 3,658) demonstrated overall F1 scores that were among those 
of the best performers from the competition (Supplementary 
Table 7)24, with a class average F1 of 0.83. This demonstrates the 
ability of our end-to-end DNN-based approach to generalize to 
a new set of rhythm labels on a different dataset.

Table 1 | Diagnostic performance of the DNN and averaged individual cardiologists compared to the cardiologist committee 
consensus (n = 328)

Algorithm AUC (95% CI)a Algorithm F1
b Average cardiologist F1

Sequencea Setb Sequence Set Sequence Set

Atrial fibrillation and flutter 0.973 (0.966–0.980) 0.965 (0.932–0.998) 0.801 0.831 0.677 0.686

AVB 0.988 (0.983–0.993) 0.981 (0.953–1.000) 0.828 0.808 0.772 0.761

Bigeminy 0.997 (0.991–1.000) 0.996 (0.976–1.000) 0.847 0.870 0.842 0.853

EAR 0.913 (0.889–0.937) 0.940 (0.870–1.000) 0.541 0.596 0.482 0.536

IVR 0.995 (0.989–1.000) 0.987 (0.959–1.000) 0.761 0.818 0.632 0.720

Junctional rhythm 0.987 (0.980–0.993) 0.979 (0.946–1.000) 0.664 0.789 0.692 0.679

Noise 0.981 (0.973–0.989) 0.947 (0.898–0.996) 0.844 0.761 0.768 0.685

Sinus rhythm 0.975 (0.971–0.979) 0.987 (0.976–0.998) 0.887 0.933 0.852 0.910

SVT 0.973 (0.960–0.985) 0.953 (0.903–1.000) 0.488 0.693 0.451 0.564

Trigeminy 0.998 (0.995–1.000) 0.997 (0.979–1.000) 0.907 0.864 0.842 0.812

Ventricular tachycardia 0.995 (0.980–1.000) 0.980 (0.934–1.000) 0.541 0.681 0.566 0.769

Wenckebach 0.978 (0.967–0.989) 0.977 (0.938–1.000) 0.702 0.780 0.591 0.738

Frequency-weighted average 0.978 0.977 0.807 0.837 0.753 0.780
aDNN algorithm area under the ROC compared to the cardiologist committee consensus. bDNN algorithm and averaged individual cardiologist F1 scores compared to the cardiologist committee consensus. 
Sequence-level describes the algorithm predictions that are made once every 256 input samples (approximately every 1.3 s) and are compared against the gold-standard committee consensus at the same 
intervals. Set-level describes the unique set of algorithm predictions that are present in the 30-s record. Sequence AUC prediction, n =​ 7,544; set AUC prediction, n =​ 328.
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Our study is the first comprehensive demonstration of a deep 
learning approach to perform classification across a broad range 
of the most common and important ECG rhythm diagnoses. Our 
DNN had an average class-weighted AUC of 0.97, with higher aver-
age F1 scores and sensitivities than cardiologists. These findings 
demonstrate that an end-to-end DNN approach has the potential 
to be used to improve the accuracy of algorithmic ECG interpreta-
tion. Recent algorithmic and computational advances compel us to 
revisit the standard approaches to automated ECG interpretation. 
Furthermore, algorithmic approaches whose performance improves 
as more data become available, such as deep learning2, can leverage 
the widespread digitization of ECG data and provide clear oppor-
tunities to bring us closer to the ideal of a learning health care sys-
tem29. We emphasize our use in this study of a dataset large enough 
to evaluate an end-to-end deep learning approach to predict mul-
tiple diagnostic ECG classes, and our validation against the high 
standard of a cardiologist consensus committee. (Most cardiologists 
were subspecialized in rhythm abnormalities.) We believe this is the 
most clinically relevant gold standard, since cardiologists perform 
the final ECG diagnosis in nearly all clinical settings.

Our study demonstrates that the paradigm shift represented by 
end-to-end deep learning may enable a new approach to automated 
ECG analysis. The standard approach to automated ECG interpreta-
tion employs various techniques across a series of steps that include 
signal preprocessing, feature extraction, feature selection/reduction, 
and classification30. At each step, hand-engineered heuristics and deri-
vations of the raw ECG data are developed with the ultimate aim to 
improve classification for a given rhythm, such as atrial fibrillation31,32. 

In contrast, DNNs enable an approach that is fundamentally different 
since a single algorithm can accomplish all of these steps ‘end-to-end’ 
without requiring class-specific feature extraction; in other words, the 
DNN can accept the raw ECG data as input and output diagnostic 

Table 2 | DNN algorithm and cardiologist sensitivity compared 
to the cardiologist committee consensus, with specificity fixed 
at the average specificity level achieved by cardiologists

Specificity Average 
cardiologist 
sensitivity

DNN 
algorithm 
sensitivity

Atrial fibrillation and 
flutter

0.941 0.710 0.861

AVB 0.981 0.731 0.858

Bigeminy 0.996 0.829 0.921

EAR 0.993 0.380 0.445

IVR 0.991 0.611 0.867

Junctional rhythm 0.984 0.634 0.729

Noise 0.983 0.749 0.803

Sinus rhythm 0.859 0.901 0.950

SVT 0.983 0.408 0.487

Ventricular tachycardia 0.996 0.652 0.702

Wenckebach 0.986 0.541 0.651
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Fig. 1 | ROC and precision-recall curves. a, Examples of ROC curves calculated at the sequence level for atrial fibrillation (AF), trigeminy, and AVB.  
b, Examples of precision-recall curves calculated at the sequence level for atrial fibrillation, trigeminy, and AVB. Individual cardiologist performance is 
indicated by the red crosses and averaged cardiologist performance is indicated by the green dot. The line represents the ROC (a) or precision-recall curve 
(b) achieved by the DNN model. n =​ 7,544 where each of the 328 30-s ECGs received 23 sequence-level predictions. 
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probabilities. With sufficient training data, using a DNN in this man-
ner has the potential to learn all of the important previously manually 
derived features, along with as-yet-unrecognized features, in a data-
driven way2, and may learn shared features useful in predicting multi-
ple classes. These properties of DNNs can serve to improve prediction 
performance, particularly since there is ample evidence to suggest that 
the currently recognized, manually derived ECG features represent 
only a fraction of the informative features for any diagnosis33,34.

While artificial neural networks were first applied toward the 
interpretation of ECGs as early as two decades ago3,35, until recently 
they only contained several layers and were constrained by algo-
rithmic and computational limitations. More recent studies have 
employed deeper networks, although some only use DNNs to per-
form certain steps in the ECG processing pipeline, such as feature 
extraction33 or classification25. End-to-end DNN approaches have 
been used more recently showing good performance for a limited set 
of ECG rhythms, such as atrial fibrillation22,23,36, ventricular arrhyth-
mias21, or individual heartbeat classes20,21,37,38. While these prior 
efforts demonstrated promising performance for specific rhythms, 
they do not provide a comprehensive evaluation of whether an end-
to-end approach can perform well across a wide range of rhythm 
classes, in a manner similar to that encountered clinically. Our 
approach is unique in using a 34-layer network in an end-to-end 
manner to simultaneously output probabilities for a wide range of 
distinct rhythm diagnoses, all of which is enabled by our dataset, 
which is orders of magnitude larger than most other datasets of 
its kind26. Distinct from some other recent DNN approaches39, no 
substantial preprocessing of ECG data, such as Fourier or wavelet 
transforms40, is needed to achieve strong classification performance.

Since arrhythmia detection is one of the most problematic tasks 
for existing ECG algorithms1,5,6, if validated in clinical settings 
through clinical trials, our approach has the potential for substantial 
clinical impact. Paired with properly annotated digital ECG data, our 
approach has the potential to increase the overall accuracy of prelim-
inary computerized ECG interpretations and can also be used to cus-
tomize predictions to institution- or population-specific applications 
by additional training on institution-specific data. While expert pro-
vider confirmation will probably be appropriate in many clinical set-
tings, the DNN could expand the capability of an expert over-reader 
in the clinical workflow, for example, by triaging urgent conditions 
or those for which the DNN has the least ‘confidence’. Since ECG data 

collected from different clinical applications range in duration from 
10 s (standard 12-lead ECGs) to multiple days (single-lead ambula-
tory ECGs), the application of any algorithm, including ours, must 
ultimately be tailored to the target clinical application. For example, 
even at the performance characteristics we report, applying our algo-
rithm sequentially across an ECG record of long duration would 
result in nontrivial false-positive diagnoses. Faced with a similar 
problem, cardiologists probably incorporate additional mechanisms 
to improve their diagnostic performance, such as taking advantage of 
the increased context or knowledge about arrhythmia epidemiology. 
Similarly, additional algorithmic steps or post-processing heuristics 
may be important before clinical application.

An important finding from our study is that the DNN appears to 
recapitulate the misclassifications made by individual cardiologists, 
as demonstrated by the similarity in the confusion matrices for the 
model and cardiologists. Manual review of the discordances revealed 
that the DNN misclassifications overall appear very reasonable. In 
many cases, the lack of context, limited signal duration, or having a 
single lead limited the conclusions that could reasonably be drawn 
from the data, making it difficult to definitively ascertain whether the 
committee and/or the algorithm was correct. Similar factors, as well 
as human error, may explain the inter-annotator agreement of 72.8%.

Of the rhythm classes we examined, ventricular tachycardia is a 
clinically important rhythm for which the model had a lower F1 score 
than cardiologists, but interestingly had higher sensitivity (94.1%) 
than the averaged cardiologist (78.4%). Manual review of the 16 
records misclassified by the DNN as ventricular tachycardia showed 
that ‘mistakes’ made by the algorithm were very reasonable. For 
example, ventricular tachycardia and idioventricular rhythm (IVR) 
differ only in the heart rate being above or below 100 beats per min-
ute (b.p.m.), respectively. In 7 of the committee-labeled IVR cases, the 
record contained periods of heart rate ≥​ 100 b.p.m., making ventricu-
lar tachycardia a reasonable classification by the DNN; the remaining 
3 committee-labeled IVR records had rates close to 100 b.p.m.. Of the 
5 cases where the committee label was atrial fibrillation (4) or SVT (1), 
all but one displayed aberrant conduction, resulting in wide QRS com-
plexes (the ECG waveform corresponding to ventricular activation) 
with a similar appearance to ventricular tachycardia. If we recategorize 
the 7 IVR records with a rate ≥​ 100 b.p.m. as ventricular tachycardia, 
overall DNN performance on ventricular tachycardia exceeds that of 
cardiologists by F1 score, with a set-level F1 score of 0.82 (versus 0.77).
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Fig. 2 | Confusion matrices. a, Confusion matrix for the predictions of the DNN versus the cardiology committee consensus. b, Confusion matrix for predictions of 
individual cardiologists versus the cardiology committee consensus. The percentage of all possible records in each category is displayed on a color gradient scale. 
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This study has several important limitations. Our input dataset 
is limited to single-lead ECG records obtained from an ambula-
tory monitor, which provides limited signal compared to a standard 
12-lead ECG; it remains to be determined if our algorithm perfor-
mance would be similar in 12-lead ECGs. However, it may be in 
applications such as this, which have lower signal-to-noise ratio and 
where the current standard of care leaves more room for improve-
ment, that approaches such as deep learning may provide the greatest 
impact. As discussed earlier, a limitation facing this, or any algorithm, 
before clinical application would be tailoring it to the target applica-
tion, which may require additional training or post-processing steps. 
Additionally, systematic differences in the way technicians versus 
cardiologists labeled records in our dataset could have decreased 
DNN performance, although we took precautions to limit this by 
establishing standard operating protocols for annotation. In addi-
tion, as revealed in our manual review of discordant predictions, in 
some cases there remains uncertainty in the correct label. Given the 
resource-intensive nature of cardiologist committee ECG annotation, 
our test dataset was limited to records from 328 patients; confidence 
intervals (CIs) with our test dataset size were acceptably narrow, as we 
report in Table 1, although our ability to perform subgroup analysis 
(such as by age/sex) is limited. Finally, we also note that to obtain a 
sufficient quantity of rare rhythms in our training and test datasets, 
we targeted patients exhibiting these rhythms during data extraction. 
This implies that prevalence-dependent metrics such as the F1 score 
would not be expected to generalize to the broader population.

In summary, we demonstrate that an end-to-end deep learning 
approach can classify a broad range of distinct arrhythmias from 
single-lead ECGs with high diagnostic performance similar to that 
of cardiologists. If confirmed in clinical settings, this approach has 
the potential to improve the accuracy, efficiency, and scalability of 
ECG interpretation.

Online content
Any methods, additional references, Nature Research reporting 
summaries, source data, statements of data availability and asso-
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Methods
Study participants and sampling procedures. Our dataset contained 
retrospective, de-identified data from adult patients >​18 years old who used  
the Zio monitor (iRhythm Technologies, Inc) from January 2013 to March 2017. 
All extracted data were de-identified according to the Health Insurance Portability 
and Accountability Act Safe Harbor. According to the iRhythm Technologies 
privacy policy, fully de-identified patient data may be shared externally for research 
purposes; patients may opt out of this sharing. Accordingly, written informed 
consent was not necessary for this study given that the 30-s ECG samples of both 
the training and test datasets were appropriately de-identified before use. The 
study was reviewed and exempted from full review by the Stanford University 
Institutional Review Board.

We extracted a median of one 30-s record per patient to construct the training 
dataset. ECG records were extracted based on the report summaries produced by 
iRhythm Technologies clinical workflow, which includes a full review by a certified 
ECG technician of initial annotations from an algorithm which is FDA 510(k) 
approved for clinical use. We randomly sampled patients exhibiting each rhythm; 
from these patients, we selected 30-s records where the rhythm class was present. 
Although the targeted rhythm class was typically present within the record, most 
records contained a mix of multiple rhythms. To further improve the balance 
of classes in the training dataset, rare rhythms such as AVB, were intentionally 
oversampled, with a median of two 30-s records per patient. For the test dataset, 
30-s records of each rhythm were sampled in a similar manner to achieve a greater 
representation of rare rhythms; however, the test dataset included only a single 
record per patient. The training, development, and test datasets had completely 
disjointed sets of patients.

Annotation procedures. All ECG records in the training and test datasets 
underwent additional annotation procedures. We used separate procedures to 
annotate the training and test datasets, reserving the resource-intensive cardiologist 
annotation for use as the gold standard in the test dataset. To annotate the training 
dataset, a group of senior certified ECG technicians reviewed all records and noted 
the onset and offset of all rhythms on the record. Every record was randomly 
assigned to be reviewed by a single technician specifically for this task, not for any 
other purpose. All annotators received specific instructions and training regarding 
how to annotate transitions between rhythms to improve labeling consistency. We 
held out records from a random 10% of the training dataset patients for use as a 
development dataset to perform DNN hyper-parameter tuning.

Eight board-certified practicing cardiac electrophysiologists and one board-
certified practicing cardiologist (all referred to as cardiologists) annotated records 
in the test dataset. All iRhythm Technologies clinical annotations were removed 
from the test dataset. Cardiologists were divided into three committees of three 
members each; each committee annotated a separate one-third of the test dataset 
(112 records). Cardiologist committees discussed records as a group and annotated 
by consensus, providing the gold standard for model evaluation. Each of the 
remaining six cardiologists that were not part of the committee for that record 
also provided individual annotations for that record. These annotations were 
used to compare the model’s performance to that of the individual cardiologists. 
In summary, every record in the test dataset received one committee consensus 
annotation from a group of three cardiologists and six individual cardiologist 
annotations.

Many ECG records contained multiple rhythm class diagnoses since the onset 
and offset of all unique classes were labeled within each 30-s record. The atrial 
fibrillation class combined atrial fibrillation and atrial flutter. The AVB class 
combined both type 2 second-degree AVB (Mobitz II/Hay) and third-degree 
AVB. We combined these classes because they have similar clinical consequences. 
The noise label was selected whenever artifact in the signal precluded accurate 
interpretation of the underlying rhythm.

Algorithm development. We developed a convolutional DNN to detect 
arrhythmias (Extended Data Fig. 1), which takes as input the raw ECG data 
(sampled at 200 Hz, or 200 samples per second) and outputs one prediction every 
256 samples (or every 1.28 s), which we call the output interval. The network 
takes as input only the raw ECG samples and no other patient- or ECG-related 
features. The network architecture has 34 layers; to make the optimization of such 
a network tractable, we employed shortcut connections in a manner similar to 
the residual network architecture41. The network consists of 16 residual blocks 
with two convolutional layers per block. The convolutional layers have a filter 
width of 16 and 32*2k filters, where k is a hyper-parameter which starts at 0 and 
is incremented by 1 every fourth residual block. Every alternate residual block 
subsamples its inputs by a factor of 2. Before each convolutional layer, we applied 
batch normalization42 and a rectified linear activation, adopting the pre-activation  
block design43. The first and last layers of the network are special-cased due 
to this pre-activation block structure. We also applied Dropout44 between the 
convolutional layers and after the nonlinearity with a probability of 0.2. The final 
fully connected softmax layer produces a distribution over the 12 output classes.

The network was trained de novo with random initialization of the weights as 
described by He et al.9. We used the Adam optimizer45 with the default parameters 
β1 =​ 0.9 and β2 =​ 0.999, and a mini batch size of 128. We initialized the learning 

rate to 1 ×​ 10−3 and reduced it by a factor of 10 when the developmentally set loss 
stopped improving for two consecutive epochs. We chose the model that achieved 
the lowest error on the development dataset.

In general, the hyper-parameters of the network architecture and optimization 
algorithm were chosen via a combination of grid search and manual tuning. For the 
architecture, we searched primarily over the number of convolutional layers, the size 
and number of the convolutional filters, as well as the use of residual connections. 
We found the residual connections useful once the depth of the model exceeded 
eight layers. We also experimented with recurrent layers including long short-term 
memory cells46 and bidirectional recurrence, but found no improvement in accuracy 
and a substantial increase in runtime; thus, we abandoned this class of models. We 
manually tuned the learning rate to achieve fastest convergence.

Algorithm evaluation. Since the DNN outputs one class prediction every output 
interval, it makes a series of 23 rhythm predictions for every 30-s record. The 
cardiologists annotated the start and end point of each rhythm class in the record. 
We used this to construct a cardiologist label at every output interval by rounding 
the annotation to the nearest interval boundary. Therefore, model accuracy can 
be assessed at the level of every output interval, which we call ‘sequence-level’, or 
at the record level, which we call ‘set-level’. To compare model predictions at the 
sequence level, the model predictions at each output interval were compared with 
the corresponding committee consensus labels for that same output interval. At 
the set level, the set of unique rhythm classes across a given ECG record that was 
predicted by the DNN was compared with the set of rhythm classes annotated 
across the record by the committee consensus. The set-level evaluation, unlike  
the sequence-level, does not penalize for time misalignment of a rhythm 
classification within a record.

Algorithm evaluation at the sequence level allows comparison against the 
gold standard at every output interval, providing the most comprehensive metric 
of algorithm performance, which we therefore employ for most metrics. The 
sequence-level evaluation is also similar to clinical applications for telemetry or 
Holter monitor analysis, whereby it is critical to identify the onset and the offset 
of rhythms. Evaluation at the set level is a useful abstraction, approximating how 
the DNN algorithm might be applied to a single ECG record to identify which 
diagnoses are present in a given record.

To train and evaluate our model on the Physionet Challenge data, which contains 
variable length recordings, we made minor modifications to the DNN. Without any 
change, the DNN can accept as input any record with a length that is a multiple of 256 
samples. To handle examples that are not a multiple of 256, records were truncated 
to the nearest multiple. We used the given record label as the label for approximately 
every 1.3-s output prediction. To produce a single prediction for the variable length 
record we used a majority vote of the sequence-level predictions.

Statistical analysis. We calculated the ROC analysis and AUC to assess model 
discrimination for each rhythm class with a one versus other strategy28,47. AUCs 
for sequence-level and set-level analyses are presented separately. We give a two-
sided CI for the AUC scores48. Sensitivity and specificity were calculated at binary 
decision thresholds for every rhythm class. We computed the precision-recall 
curve, which shows the relationship between PPV (precision) and sensitivity 
(recall)49. It provides complementary information to the ROC curve, especially 
with class-imbalanced datasets. To compare the relative performance of the 
DNN to the cardiologist committee labels, we calculated the F1 score, which is 
the harmonic mean of the PPV and sensitivity. It ranges from 0 to 1 and rewards 
algorithms that maximize both PPV and sensitivity simultaneously, rather than 
favoring one over the other. The F1 score is complementary to the AUC, which 
is particularly helpful in the setting of multi-class prediction and less sensitive 
than the AUC in settings of class imbalance49. For an aggregate measure of model 
performance, we computed the class frequency-weighted arithmetic mean for both 
the F1 score and the AUC. To obtain estimates of how the DNN compares to an 
average cardiologist, the characteristics of cardiologist performance were averaged 
across the six cardiologists who individually annotated each record. We used 
confusion matrices to illustrate the specific examples of rhythm classes where the 
DNN prediction or the individual cardiologist’s prediction were discordant with 
the committee consensus at the sequence level. Among the individual cardiologist 
annotations in the test dataset, we calculated inter-annotator agreement as the ratio 
of the number of times two annotators agreed that a rhythm was present at each 
output interval and the total number of pairwise comparisons.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Code availability. Code for the algorithm development, evaluation, and statistical 
analysis is open source with no restrictions and is available from https://github.
com/awni/ecg.

Data availability
The test dataset used to support the findings of this study is publicly available at 
https://irhythm.github.io/cardiol_test_set without restriction. Restrictions apply to 
the availability of the training dataset, which was used under license from iRhythm 
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Technologies, Inc. for the current study. iRhythm Technologies, Inc. will consider 
requests to access the training data on an individual basis. Any data use will be 
restricted to noncommercial research purposes, and the data will only be made 
available on execution of appropriate data use agreements.
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Extended Data Fig. 1 | Deep Neural Network architecture. Our deep neural network consisted of 33 convolutional layers followed by a linear output layer 
into a softmax. The network accepts raw ECG data as input (sampled at 200 Hz, or 200 samples per second), and outputs a prediction of one out of 12 
possible rhythm classes every 256 input samples.
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Extended Data Fig. 2 | Receiver operating characteristic curves for deep neural network predictions on 12 rhythm classes. Individual cardiologist 
performance is indicated by the red crosses and averaged cardiologist performance is indicated by the green dot. The line represents the ROC curve 
of model performance. AF-atrial fibrillation/atrial flutter; AVB- atrioventricular block; EAR-ectopic atrial rhythm; IVR-idioventricular rhythm; SVT-
supraventricular tachycardia; VT-ventricular tachycardia. n =​ 7,544 where each of the 328 30-second ECGs received 23 sequence-level predictions.
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Study description We developed and validated the performance of a Deep Neural Network on ambulatory single-lead ECG. The data in the study is 
quantitative consisting of ECG records and their corresponding annotation.

Research sample The dataset was a deidentified, retrospective dataset of adult patients >18 years of age who have used the iRhythm Zio monitor for 
clinical indications.

Sampling strategy  Records were chosen randomly from within the study period, though abnormal rhythms were intentionally over-sampled to provide 
more training examples for these rhythms. For the training set the sample size was chosen such that our model matched the 
performance of certified ECG technicians on a validation dataset. For the test set our sample size was chosen so that we would obtain 
roughly 20 (or more) examples for each rhythm class. We justified this sample size post-hoc with confidence intervals in our AUC 
computations.

Data collection We extracted a median of 1 (and a maximum of 3) 30-second records per patient to construct the training dataset. To improve the 
balance of classes in the training dataset, records that exhibited less prevalent rhythms were intentionally oversampled, to a maximum of 
three 30-second records per patient. For the test dataset, 30-second records of each rhythm were randomly sampled from patients 
during the study period to achieve an equal number of records per class. 

Timing The data was collected retrospectively from a cohort who used the Zio monitor between January 2013 and March 2017

Data exclusions We excluded patients under the age of 18 from the study. We preestablished this exclusion criteria in order to simplify any potential data 
use approval processes regarding the use of data from minors.

Non-participation We did not require informed consent for this study given that the data belongs to iRhythm Technologies and that the data was fully de-
identified.

Randomization Our data was selected from the study period according to the selection strategy mentioned in the "Data Collection" section. Other than 
oversampling for certain arrhythmias all patients were randomly selected from pool of patients available in the study period. 
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